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Abstract 

Decision trees are attractive classifiers due to  their  
high execution speed. But trees derived with traditional 
methods of ten cannot be grown t o  arbitrary complexity 
for possible loss of generalization accuracy o n  unseen 
data. T h e  limitation o n  complexity usually means  sub- 
optimal accuracy o n  training data. Following the prin-  
ciples of stochastic modeling, we  propose a method t o  
construct tree-based classifiers whose capacity can be 
arbitrarily expanded for increases in accuracy f o r  both 
training and unseen data. T h e  essence of the method 
is  t o  build multiple trees in randomly selected subspaces 
of the feature space. Trees in different subspaces gen- 
eralize their classification in complementary ways, and 
their combined classification can be monotonically im- 
proved. T h e  validity of the method is demonstrated 
through experiments o n  the recognition of handwri t ten 
digits. 

1 Introduction 
Decision-tree classifiers are attractive because of 

their many advantages - the idea is intuitively ap- 
pealing, training is often straight-forward, and best of 
all, classification is extremely fast. They have been 
studied extensively in the past two decades and used 
heavily in practical applications. Prior studies in- 
clude many tree construction methods [3] [14] [15] and, 
recently, relationship to other classifiers like HMM 
methods [8] and multi-layer perceptrons [la]. 

Many studies propose heuristics to construct a tree 
for optimal classification accuracy or to minimize its 
size. Yet trees constructed with fixed training data 
are prone to be overly adapted to  the training data. 
Pruning back a fully-grown tree may increase general- 
ization accuracy on unseen data, often at the expense 
of the accuracy on the training data. Probabilistic 
methods that allow descent through multiple branches 
with different confidence measures also do not guar- 
antee optimization of the training set accuracy. 

Apparently there is a fundamental limitation on 
the complexity of tree classifiers - they should not 
be grown too complex to overfit the training data. 
No method is known that can grow trees to arbitrary 
complexity, and increase both training and testing set 
accuracy at the same time. 
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Our study shows that this difficulty is not intrinsic 
to tree classifiers. In this paper we describe a method 
to overcome this apparent limitation. We will illus- 
trate the ideas using oblique decision trees which are 
convenient for optimizing training set accuracy. We 
begin by describing oblique decision trees and their 
construction, and then present the method for increas- 
ing generalization accuracy through systematic cre- 
ation and use of multiple trees. Afterwards, experi- 
mental results on handwritten digits are presented and 
discussed. 

2 Oblique Decision Trees 

Binary decision trees studied in prior literature of- 
ten use a single feature at each nonterminal (decision) 
node. A test point is assigned to  the left or right 
branch by its value of that feature. Geometrically this 
corresponds to assigning the point to  one side of a 
hyperplane that is parallel to one axis of the feature 
space. 

Oblique decision trees [5] are more general in that 
the hyperplanes are not necessarily parallel to  any of 
the axes. Each hyperplane is represented by a linear 
function of the feature components. Using oblique hy- 
perplanes usually yields a smaller tree that can fully 
split the data to  leaves containing a single class. Sizes 
of the trees may differ drastically depending on how 
the hyperplanes are selected. 

Most of the sophistication in tree growing algo- 
rithms is in the attempt to  minimize the tree size, 
but there is little promise on the generalization ac- 
curacy. Instead of investigating these algorithms, we 
focus our attention on general methods for improving 
generalization accuracy. We therefore starts with two 
simple methods for tree construction, neither of which 
involves any sophisticated optimization procedure. 

In either method the stopping rule is until all the 
terminal nodes (leaves) contain points of a single class, 
or until it is impossible to split further (this occurs in 
principle when identical samples exist across two or 
more classes, or in practice by limitations of the hy- 
perplane search algorithm, e.g. a coarse quantization 
of the search space). Since we do not want to lose any 
accuracy on classifying the training data, we do not 
consider methods to prune back the tree. 
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Central axis projection 
The first method for tree growing finds a splitting 

hyperplane among those that are perpendicular to a 
line connecting two data clusters. It aims at  separat- 
ing at  least two classes at each nonterminal node. 

Assume that we have training points of two or more 
classes at  any nonterminal node including the root. 
We first find the two classes whose means are farthest 
apart by Euclidean distance. The sample means of 
these two classes are then connected by a straight line 
(for convenience we call this line the central axis), and 
all the data points are projected onto this line. We 
then search along the line segment between the two 
means at  a fixed step, and evaluate an error function 
at  each hyperplane passing through the stop points 
and perpendicular to  the line. For each class, the er- 
ror function counts the number of points that are not 
on the side of the hyperplane where the majority of 
the points of that class fall. The hyperplane that min- 
imizes the sum of these counts is chosen for that node. 

The procedure runs in one pass and is very fast. 
Other than minor difficulties caused by the size of the 
search steps or identical samples, it always stops when 
all leaves contain a single class. The drawback is that 
the crude optimization often leads to a very large tree. 

Perceptron training 
The second method uses the fixed-increment per- 

ceptron training algorithm to choose the hyperplane 
at  each nonterminal node. 

As in the first method, a t  each nonterminal node, 
the two classes that are farthest apart are found and 
their means are chosen as anchor points. Two sets SI 
and S2 are initialized each containing one of these two 
classes. The other classes are then assigned to either 
S1 or S2 depending on which anchor point is closer 
to their means by Euclidean distance. The method 
then searches for a hyperplane to separate SI and S2, 
minimizing the number of points on the wrong side of 
the hyperplane. 

The algorithm terminates when the error count de- 
creases to zero. However, since there is no test on the 
linear separability of S1 and SZ, there is no guaran- 
tee on the convergence of the algorithm. Therefore 
the algorithm is also forced to terminate after a fixed 
number of iterations. In the case that the perceptron 
thus obtained does not separate points of any class 
from the rest, the method continues by switching to 
central axis projection. 

Although the formation of the two sets is some- 
what arbitrary, the iterative optimization does lead to 
a substantial reduction of tree sizes. Training is more 
expensive, but the smaller trees take less storage and 
are faster for classifying new samples. 

3 Systematic Creation of Multiple 

Both tree-growing methods are able to grow com- 
plex trees that perfectly classify the training data. Yet 

Trees 

because of the biases of the particular ways in which 
the hyperplanes are chosen, the generalization accu- 
racy is rarely as good. Retreating to non-fully split 
trees would mean losing 100% accuracy on training 
data, which hardly provides any confidence on doing 
well on unseen test data. 

Past experience in other contexts [6] has shown that 
the use of multiple classifiers can often compensate for 
the bias of a single classifier. It turns out that the 
same methodology is applicable here. We will look 
into using multiple trees - i.e., a forest - to overcome 
the generalization biases. 

To be successful with multiple trees, we need a way 
to create trees that generalize independently. We also 
need a discriminant function that combines the clas- 
sification given by the individual trees and preserves 
their accuracies. 

How can we systematically create multiple decision 
trees using the same set of data? There are many 
ways to construct different trees, but an arbitrarily 
introduced difference does not necessarily give trees 
we need - trees that are 100% accurate on training 
data and yet have different generalization errors. For 
instance, consider building trees using different sub- 
sets of the training data. Those trees may not classify 
the full training set perfectly. 

Randomization has been a powerful tool for intro- 
ducing differences in classifiers. Previously it has been 
used to initialize training algorithms with different 
configurations that eventually yield different classifiers 

Our method to create multiple trees is to construct 
trees in randomly selected subspaces of the feature 
space. For a given feature space of m dimensions, 
there are 2" subspaces in which a decision tree can 
be constructed. The use of randomization in selecting 
components of the feature vector is merely a conve- 
nient way to explore the possibilities. 

A decision tree is constructed in each selected sub- 
space using the entire training set and the algorithms 
given in the previous section. Notice that each of these 
trees classifies the training data 100% correctly. Yet 
the classification is invariant for points that are differ- 
ent from the training points only in the unselected di- 
mensions. Thus each tree generalizes its classification 
in a different way. The vast number of subspaces in 
high dimensional feature spaces provides more choices 
than can be used in practice. 

There are many interesting theoretical questions 
following this idea. How many of the subspaces must 
we use before we can achieve a certain accuracy with 
the combined classification? What will happen if we 
use all the possible subspaces? How do the results dif- 
fer if we restrict ourselves to  subspaces with certain 
properties? 

Some of these questions are addressed in the theory 
of stochastic modeling, where the combination of var- 
ious ways to partition the feature spaces is studied [l] 
[9] [lo] [ll]. In the theory, classification accuracies are 
related to the statistical properties of the combination 
function, and it is shown that very high accuracies can 

[41 [71. 

279 



be achieved far before all the possible combinations are 
used. 

4 The Discriminant Function 
Given t trees created in random subspaces, a dis- 

criminant function is needed to combine their classi- 
fication of a test point. Here we use the combination 
function proposed in [7]. 

For a point 2, let v3(x) be the terminal node 
that x is assigned to when it descends down tree T3 
( j  = 1 ,2 ,  ..., t ) .  Given this, let the posterior probabil- 
ity that x belongs to  class c (c = 1,2 ,  ..., n) be denoted 
by P(C lU3  (x)). 

can be estimated by the fraction of class c points over 
all points that are assigned to u3(x). Notice that in 
this context, since the trees are fully split, most ter- 
minal nodes contain only a single class (except for 
abnormal stops) and thus the value of the estimate 
P(clvj(z)) is almost always 1. 

The discriminant function is defined as 
. t  

- j=1 

and the decision rule is to  assign x to  class c for which 
gc(x) is the maximum. 

It is obvious that the discriminant preserves 100% 
accuracy on the training set. For an unseen point, g(x) 
averages over the posterior probabilities that are con- 
ditioned on reaching a particular terminal node. Geo- 
metrically, each terminal node defines a neighborhood 
around the points assigned to that node in the chosen 
subspace. By averaging over the posterior probabili- 
ties in these neighborhoods (decision regions), the dis- 
criminant approximates the posterior probability for a 
given x in the original feature space. This is similar 
to other kernel-based techniques for estimating poste- 
rior probabilities, except that here the kernels are of 
irregular shapes and sizes. 

In [7] the discriminant is used to  combine multiple 
classifiers trained by learning vector quantization, and 
it is shown experimentally that the accuracy improves 
with increases in t .  The analytical properties of the 
function and its several variants have been studied ex- 
tensively by Berlind [l]. 

5 Experiments with Handwritten Dig- 
its 

We now show the effectiveness of the method with 
experiments in a difficult recognition problem - the 
recognition of isolated handwritten digits. Notice that 
neither the algorithm nor the features have been tuned 
specifically for the data - similar experiments have 
been performed on machine-printed symbols, with es- 
sentially the same findings. The method is most ef- 
fective for problems involving high dimensional data 
because of the existence of more subspaces. 

The data 
The experiments were performed on handwritten 

digits of 10 classes. The images are from the 1992 
NIST (National Institute of Standards and Technol- 
ogy) Competition (for details see [a]). The training 
and testing sets from the competition are mixed, and 
from the mixed set 60,000 samples are drawn to form 
the training set TR,  and 10,000 samples are drawn to 
form the test set T E .  The images are binary and nor- 
malized to a size of 20 x 20 pixels. There are roughly 
the same number of samples in each class in both the 
training and testing sets. 

The features 
We first use the raw pixel maps of the binary, nor- 

malized images as input feature vectors. For conve- 
nience we call this the pixel vector ( f i )  which has 
20 x 20 = 400 components. To see how simple knowl- 
edge of the domain can help, another feature vector is 
constructed by exploring the neighbor relationships of 
the pixels. These features are similar to those used in 
constructing quadratic polynomial discriminants [13]. 
They are conjunctions and disjunctions of neighboring 
pixels in various directions. For a given pixel I ( i ,  j )  at 
row i and column j ,  we take 

H ( i ,  j) = J ( i ,  j )  A I ( i ,  j + 2) 
V ( i ,  j )  = I ( i ,  j )  A r ( i  + 2 ,  j) 
~ ( i ,  j )  = r ( i ,  j) A r(i  + 2, j + 2) 
s(i, j) = r ( i ,  j) A r ( i  + 2 ,  j - 2) 

horizontal neighbor 
vertical neighbor 
NW-SE diagonal neighbor 
SW-NE diagonal neighbor 

and 
~ ’ ( i ,  j) = ~ ( i ,  j) v ~ ( i  + I ,  j) v ~ ( i  + 2 ,  j) v ~ ( i  + 3 , ~ )  
~ ’ ( i ,  j) = ~ ( i ,  j) v v ( i , j  + 1) v ~ ( i ,  j + 2) v ~ ( i ,  j + 3) 
N ‘ ( i ,  j )  = N ( i ,  j) V N ( i  + 1, j - 1) V N ( i  + 2 ,  j - 2 )  v N ( i  + 3 ,  j - 3) 
S‘(i, j) = ~ ( i ,  j) v s(i + 1, j + 1) v ~ ( i  + 2 ,  j + 2) v ~ ( i  + 3,  j + 31,  

where A is the binary AND and v is the binary 
OR operations. The second vector f 2  is formed 
by concatenating f i  with the well-defined values of 
~ ’ ( z , j ) , V ’ ( z , j ) , ~ ’ ( z , j ) ,  and S’ (z , j )  for each ( i , j ) .  
For an image of 20 x 20 pixels, f2 has 852 components. 

Results with single trees 
First we show the results when single trees are con- 

structed in the full feature space, as in the conven- 
tional practice. We tested both vectors fi and f2  and 
both of the tree growing methods. 

Using central axis projection (abbreviated as CAP) 
and f1, a tree of 3949 nodes (including both terminal 
and nonterminal nodes) was obtained. When f 2  was 
used, the tree is slightly smaller (3255 nodcs). Us- 
ing the perceptron training algorithm (abbreviated as 
PER) and f1 ,  a tree of only 307 nodes was obtained. 
When f 2  was used, the resultant tree has only 87 
nodes. These are the results of the interaction between 
the complexity of the distributions and the algorithm 
for deriving the discriminating hypcrplanes. These 
dramatic differences in the sizes of the trees show the 
importance in the choice of tree-growing heuristics on 
classification efficiency. Table 1 shows the number of 



Table 1: Number of Terminal Nodes and Classification Accuracies for Each Class 

5 1 PER(f2) 
%corr #nodes I %corr . 
91.77 2 1  96.21 

class #nodes 

247 

25 1 
6 121 
7 185 
8 288 
9 279 
all 1975 

85.24 
83.92 
78.67 
87.07 
87.98 
79.39 

%cow #nodes 

87.13 
88.88 
89.99 139 
86.07 193 
91.09 110 
89.95 161 
83.01 234 
84.98 239 
89.57 1628 

6 
5 
3 
4 
5 
6 

terminal nodes needed to represent each class and the 
corresponding classification accuracy on T E.  

It is interesting to see that despite the differences 
in tree sizes, the two tree-growing algorithms do not 
differ by large in classification accuracy. An inefficient 
growing algorithm may cause duplication of similar 
structures along different branches, whose effect is un- 
predictable and is dependent on the class distributions 
in the feature space. 

Yet the degradation in accuracy as a class is dis- 
tributed to more terminal nodes is far more obvi- 
ous within the same tree. For instance, classes 0 
and I are consistently more likely to be correct than 
other classes, and there are consistently fewer termi- 
nal nodes representing 0’s and 1’s in each of the trees. 
Recall that each of these trees classifies correctly all 
training points in TR,  the poor performance for some 
classes on T E  is no doubt a result of poor general- 
ization. Generalization is understandably worse when 
more terminal nodes, i.e., more tailored hyperplanes 
are used to fit a class. 

%con #nodes 
96.54 

91.94 

90.20 14 
90.25 
89.72 12 
90.34 16 
84.57’ 22 
87.44 
91.11 154 

Results with multiple trees 
We now see how the problem of poor generalization 

can be overcome by the use of multiple trees. Again 
we tested the idea with both feature vectors fi and 
f2 and both tree-growing methods. The results are 
shown in Figures 1 and 2. 

We show the changes in overall classification correct 
rate as new trees were added to the classifier. Each of 
the additional trees was constructed in a random fea- 
ture subspace that had not been used. The subspaces 
were restricted to 100 or 200 dimensions in the exper- 
iments, and the resultant differences in classification 
accuracy are clear from the figures. 

Since training time is subetantially shorter with 
central axis projection, we could easily afford to  let 
the algorithm continue until 20 trees were created. 
With perceptron training we stopped the algorithm 
at 10 trees. Note that with sufficient resources the 
algorithm could have continued to create many more 
trees, and the stopping points we had chosen were ar- 
bitrary. 

In each graph the dip in the correct rate when two 

97.32 98.53 
83.30 11 1 93.22 11 ’ 92.72 

92.65 ’ 92.39 
93.14 
93.10 
89.36 

83.55 

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Number of Trees in Forests 

Figure 1: Classification Accuracy (% correct) of 
Forests Constructed by Central Axis Projection 
(in 100- and 200- dimensional random subspaces) 

60 i 
I 

I I I I I I I I I  
1 2  3 4 5 6 7 8 Y IO 

Number of Trees in Forests 

Figure 2: Classification Accuracy (% correct) of 
Forests Constructed by Perceptron Training Algo- 
rithm (in 100- and 200- dimensional random sub- 
spaces) 
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trees are used is due to  ambiguities of the combined 
decisions (two classes sharing the same gc(x) value and 
are both rejected). This can be avoided if we adjust 
the probability estimates using a secondary training 
set. 

From the graphs it is very clear that accuracy in- 
creases with the addition of new trees, and the increase 
is nearly monotonic. The trend is the same despite 
many differences in the details of the runs ~ different 
feature vectors, different numbers of subspace dimen- 
sions, and different tree-growing algorithms. The in- 
crease slows down as the forests grow, but there has 
not been any sign that there exists any upper limit 
below the highest possible. In one test we continued 
the run until 40 trees were created, and the increase in 
correct rate still did not stop. This is in sharp contrast 
with many other classifier designs, where an increase 
in classifier complexity almost always leads to  over- 
training. We have shown a way to increase classifier 
complexity (similarly, its capacity) without trading off 
generalization accuracy. 

Comparing the results with different feature vec- 
tors and different classes, it is very promising that 
with certain engineering effort (better feature designs, 
better choices of training data), an excellent classifier 
can be created. Furthermore, the classifier is arbitrar- 
ily improvable to suit accuracy demands and resource 
limits. 

Considering the large number of possible subspaces, 
our scope of exploration in the experiments has been 
quite limited. For instance, for implementational con- 
venience we restricted ourselves to combinations of 
trees in random subspaces of the same number of di- 
mensions, which is by no means necessary. In fact, the 
choice of a subspace need not be the same for all non- 
terminal nodes of a tree. The method is also not con- 
strained to any particular tree-growing algorithm, nor 
even the binary tree structure, and there is still room 
for exploration with other sophisticated tree-growing 
algorithms and various tree structures. 

6 Conclusions 
We have proposed a method for increasing gener- 

alization accuracies of decision tree-based classifiers 
without trading away accuracy on training data. Ex- 
periments on handwritten digits proved the validity of 
the idea and indicated many opportunities for further 
improvements. 

The method we have presented here is another vari- 
ant of the methodology of stochastic modeling that 
has been studied in both theory and experimentation 
recently [l] [7] [9] [lo] [ll]. The current method is in 
closest resemblance with the method of multiple LVQ- 
based classifiers studied in [7]. Both methods involve 
creating (with certain application of randomization) 
and combining multiple ways of partitioning the fea- 
ture space. The decision regions determined by these 
partitions are stochastic models, the subject of study 
in [l] and [lo]. One of the main conclusions from the 
theory is that the apparent conflict between optimiz- 

ing training set axcuracy and maintaining gener aliza- 
tion accuracy is not intrinsic. We have given another 
piece of empirical evidence of this finding. Our experi- 
mentation has also revealed great potential of applying 
the concepts of stochastic modeling to  conventional 
methods for classifier design. 

Acknowledgements 
I would like to thank Eugene Kleinberg and Roger Berlind 

for sharing with me their work on stochastic modeling; Henry 
Baird, David Ittner, Dz-Mou Jung, George Nagy for stimulating 
discussions; and Yann le Cun for providing the NIST data. 

References 
[l] R. Berlind, An Alternative Method of Stochastic Discrimi- 

nation with Applications to  Pattern Recognition, Doctoral 
Dissertation, Department of Mathematics, SUNY at Buf- 
falo, 1994. 

[2] L. Bottou, et al., Comparison of Classifier Methods: A 
Case Study in Handwritten Di it Recognition, Proceedings 
of the 12th International Conj?Terence on Pattern Recogni- 
tion, 11, Jerusalem, Israel, Oct 9-13, 1994, 77-82. 

[3] L. Breiman, J.H. Freidmen, R.A. Olsen, C.J. Stone, Clas- 
sification and Regression Trees, Wadsworth, 1984. 

[4] L.K. Hansen, P. Salamon, Neural Network Ensembles, 
IEEE Transaction of Pattern Analysis and Machine In- 
telligence, PAMI-12, 10, October 1990, 993-1001. 

[5] D. Heath, S. Kasif, S. Salzberg, Induction of Oblique 
Decision nees, Proceedings of the 13th International 
Joint Conference on Artificial Intelligence, 2, Chambery, 
France, Aug 28-Sep 3, 1993, 1002-1007. 

[GI T.K. Ho, A Theory of Multiple Classifier Systems And I t s  
Application to Visual Word Recognition, Doctoral Disser- 
tation, Department of Computer Science, SUNY at  Buf- 
falo, 1992. 

[7] T.K. Ho, Recognition of Handwritten Digits by Combin- 
ing Independent Learning Vector Quantizations, Proceed- 
ings of the Second International Conference on Document 
Analysis and Recognition, Tsukuba Science City, Japan, 
October 20-22, 1993, 818-821. 

[8] M.I. Jordan, R.A. Jacobs, Hierarchical Mixtures of Experts 
and the EM A1 orithm, A.I. Memo No. 1440, C.B.C.L. 
Memo No. 83, d T  Artificial Intelligence Laboratory, Cen- 
ter for Biological and Computational Learning, and De- 
partment of Brain and Cognitive Sciences, August 6, 1993. 

191 E.M. Kleinberg, Stochastic Discrimination, Annals of 
Mathematics and Artificial Intelligence, 1, 1990, 207-239. 

[lo] E.M. Kleinberg, An Overtraining-Resistant Stochastic 
Modeling Method for Pattern Recognition, to appear. 

[ll] E.M. Kleinberg, T.K. Ho, Pattern Recognition by Stochas- 
tic Modeling, Proceedings of the Third International 
Workshop on Frontiers in Handwriting Recognition, Buf- 
falo, May 1993, 175-183. 

[12] Y. Park, A Comparison of Neural Net Classifiers and Lin- 
ear Tree Classifiers: Their Similarities and Differences, 
Pattern Recognition, 27,  11, 1994, 1493-1503. 

[13] J. Schuermann, A Multifont Word Recognition System for 
Postal Address Reading, IEEE Transactions on Comput- 
ers, C-27, 8, Aug 1978, 721-732. 

[14] J. Schuermann, W. Doster, A Decision Theoretic Approach 
to Hierarchical Classifier Design, Pattern Recognition, 17, 

[15] I.K. Sethi, G.P.R. Sarvarayudu, Hierarchical Classifier De- 
sign Using Mutual Information, IEEB Transactions on 
Pattern Analysis and Machine Intelligence, PAMI-4, 4, 

3, 1984, 359-369. 

July 1982, 441-445. 

282 


