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Abstract

Decision trees are attractive classifiers due to their
high execution speed. But trees derived with traditional
methods often cannot be grown to arbitrary complexity
Jor possible loss of generalization accuracy on unseen
data. The limitation on complerity usually means sub-
optimal accuracy on training data. Following the prin-
ciples of stochastic modeling, we propose a method to
construct tree-based classifiers whose capacity can be
arbitrarily expanded for increases in accuracy for both
training and unseen data. The essence of the method
is to busld multiple trees in randomly selected subspaces
of the feature space. Trees in different subspaces gen-
eralize their classification in complementary ways, and
their combined classification can be monotonically im-
proved. The validity of the method is demonstrated
through experiments on the recognition of handwritten
dugits.

1 Introduction

Decision-tree classifiers are attractive because of
their many advantages — the idea is intuitively ap-
pealing, training is often straight-forward, and best of
all, classification is extremely fast. They have been
studied extensively in the past two decades and used
heavily in practical applications. Prior studies in-
clude many tree construction methods [3] [14] [15] and,
recently, relationship to other classifiers like HMM
methods [8] and multi-layer perceptrons [12].

Many studies propose heuristics to construct a tree
for optimal classification accuracy or to minimize its
size. Yet trees constructed with fixed training data
are prone to be overly adapted to the training data.
Pruning back a fully-grown tree may increase general-
ization accuracy on unseen data, often at the expense
of the accuracy on the training data. Probabilistic
methods that allow descent through multiple branches
with different confidence measures also do not guar-
antee optimization of the training set accuracy.

Apparently there is a fundamental limitation on
the complexity of tree classifiers — they should not
be grown too complex to overfit the training data.
No method is known that can grow trees to arbitrary
complexity, and increase both training and testing set
accuracy at the same time.
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Our study shows that this difficulty is not intrinsic
to tree classifiers. In this paper we describe a method
to overcome this apparent limitation. We will illus-
trate the ideas using oblique decision trees which are
convenient for optimizing training set accuracy. We
begin by describing oblique decision trees and their
construction, and then present the method for increas-
ing generalization accuracy through systematic cre-
ation and use of multiple trees. Afterwards, experi-
mental results on handwritten digits are presented and
discussed.

2 Oblique Decision Trees

Binary decision trees studied in prior literature of-
ten use a single feature at each nonterminal (decision)
node. A test point is assigned to the left or right
branch by its value of that feature. Geometrically this
corresponds to assigning the point to one side of a
hyperplane that is parallel to one axis of the feature
space.

Oblique decision trees [5] are more general in that
the hyperplanes are not necessarily parallel to any of
the axes. Each hyperplane is represented by a linear
function of the feature components. Using oblique hy-
perplanes usually yields a smaller tree that can fully
split the data to leaves containing a single class. Sizes
of the trees may differ drastically depending on how
the hyperplanes are selected.

Most of the sophistication in tree growing algo-
rithms is in the attempt to minimize the tree size,
but there is little promise on the generalization ac-
curacy. Instead of investigating these algorithms, we
focus our attention on general methods for improving
generalization accuracy. We therefore starts with two
simple methods for tree construction, neither of which
involves any sophisticated optimization procedure.

In either method the stopping rule is until all the
terminal nodes (leaves) contain points of a single class,
or until it is impossible to split further (this occurs in
principle when identical samples exist across two or
more classes, or in practice by limitations of the hy-
perplane search algorithm, e.g. a coarse quantization
of the search space). Since we do not want to lose any
accuracy on classifying the training data, we do not
consider methods to prune back the tree.



Central axis projection

The first method for tree growing finds a splitting
hyperplane among those that are perpendicular to a
line connecting two data clusters. It aims at separat-
ing at least two classes at each nonterminal node,

Assume that we have training points of two or more
classes at any nonterminal node including the root.
We first find the two classes whose means are farthest
apart by Euclidean distance. The sample means of
these two classes are then connected by a straight line
{for convenience we call this line the central axis), and
all the data points are projected onto this line. We
then search along the line segment between the two
means at a fixed step, and evaluate an error function
at each hyperplane passing through the stop points
and perpendicular to the line. For each class, the er-
ror function counts the number of points that are not
on the side of the hyperplane where the majority of
the points of that class fall. The hyperplane that min-
imizes the sum of these counts is chosen for that node.

The procedure runs in one pass and is very fast.
Other than minor difficulties caused by the size of the
search steps or identical samples, it always stops when
all leaves contain a single class. The drawback is that
the crude optimization often leads to a very large tree.

Perceptron training

The second method uses the fixed-increment per-
ceptron training algorithm to choose the hyperplane
at each nonterminal node.

As in the first method, at each nonterminal node,
the two classes that are farthest apart are found and
their means are chosen as anchor points. Two sets Sy
and S; are initialized each containing one of these two
classes. The other classes are then assigned to either
Sy or Sy depending on which anchor point is closer
to their means by Euclidean distance. The method
then searches for a hyperplane to separate S; and Ss,
minimizing the number of points on the wrong side of
the hyperplane.

The algorithm terminates when the error count de-
creases to zero. However, since there is no test on the
linear separability of S; and Sy, there is no guaran-
tee on the convergence of the algorithm. Therefore
the algorithm is also forced to terminate after a fixed
number of iterations. In the case that the perceptron
thus obtained does not separate points of any class
from the rest, the method continues by switching to
central axis projection.

Although the formation of the two sets is some-
what arbitrary, the iterative optimization does lead to
a substantial reduction of tree sizes. Training is more
expensive, but the smaller trees take less storage and
are faster for classifying new samples.

3 Systematic Creation of Multiple

Trees

Both tree-growing methods are able to grow com-
plex trees that perfectly classify the training data. Yet

279

because of the biases of the particular ways in which
the hyperplanes are chosen, the generalization accu-
racy is rarely as good. Retreating to non-fully split
trees would mean losing 100% accuracy on training
data, which hardly provides any confidence on doing
well on unseen test data.

Past experience in other contexts [6] has shown that
the use of multiple classifiers can often compensate for
the bias of a single classifier. It turns out that the
same methodology is applicable here. We will look
into using multiple trees — i.e., a forest -~ to overcome
the generalization biases.

To be successful with multiple trees, we need a way
to create trees that generalize independently. We also
need a discriminant function that combines the clas-
sification given by the individual trees and preserves
their accuracies.

How can we systematically create multiple decision
trees using the same set of data? There are many
ways to construct different trees, but an arbitrarily
introduced difference does not necessarily give trees
we need — trees that are 100% accurate on training
data and yet have different generalization errors. For
instance, consider building trees using different sub-
sets of the training data. Those trees may not classify
the full training set perfectly.

Randomization has been a powerful tool for intro-
ducing differences in classifiers. Previously it has been
used to initialize training algorithms with different
coln[ﬁjgurations that eventually yield different classifiers
[4] [7].

Our method to create multiple trees is to construct
trees in randomly selected subspaces of the feature
space. For a given feature space of m dimensions,
there are 2™ subspaces in which a decision tree can
be constructed. The use of randomization in selecting
components of the feature vector is merely a conve-
nient way to explore the possibilities.

A decision tree is constructed in each selected sub-
space using the entire training set and the algorithms
given in the previous section. Notice that each of these
trees classifies the training data 100% correctly. Yet
the classification is invariant for points that are differ-
ent from the training points only in the unselected di-
mensions. Thus each tree generalizes its classification
in a different way. The vast number of subspaces in
high dimensional feature spaces provides more choices
than can be used in practice.

There are many interesting theoretical questions
following this idea. How many of the subspaces must
we use before we can achieve a certain accuracy with
the combined classification? What will happen if we
use all the possible subspaces? How do the results dif-
fer if we restrict ourselves to subspaces with certain
properties?

Some of these questions are addressed in the theory
of stochastic modeling, where the combination of var-
ious ways to partition the feature spaces is studied [1]
[9] [10] [11]. In the theory, classification accuracies are
related to the statistical properties of the combination
function, and it is shown that very high accuracies can



be achieved far before all the possible combinations are
used.

4 The Discriminant Function

Given t trees created in random subspaces, a dis-
criminant function is needed to combine their classi-
fication of a test point. Here we use the combination
function proposed in [7].

For a point z, let v;(z) be the terminal node
that z is assigned to when it descends down tree Tj
(1 =1,2,...,t). Given this, let the posterior probabil-
ity that z belongs to class ¢ (c = 1,2, ...,n) be denoted
by P(c|v;(x)).
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can be estimated by the fraction of class ¢ points over
all points that are assigned to v;(z). Notice that in
this context, since the trees are fully split, most ter-
minal nodes contain only a single class (except for
abnormal stops) and thus the value of the estimate
P(c|v;(z)) is almost always 1.
The discriminant function is defined as
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and the decision rule is to assign z to class ¢ for which
g.(x) is the maximum.

It is obvious that the discriminant preserves 100%
accuracy on the training set. For an unseen point, g(x)
averages over the posterior probabilities that are con-
ditioned on reaching a particular terminal node. Geo-
metrically, each terminal node defines a neighborhood
around the points assigned to that node in the chosen
subspace. By averaging over the posterior probabili-
ties in these neighborhoods {decision regions), the dis-
criminant approximates the posterior probability for a
given z in the original feature space. This is similar
to other kernel-based techniques for estimating poste-
rior probabilities, except that here the kernels are of
irregular shapes and sizes.

In [7] the discriminant is used to combine multiple
classifiers trained by learning vector quantization, and
it is shown experimentally that the accuracy improves
with increases in t. The analytical properties of the
function and its several variants have been studied ex-
tensively by Berlind [1].

5 Experiments with Handwritten Dig-
its

We now show the effectiveness of the method with
experiments in a difficult recognition problem — the
recognition of isolated handwritten digits. Notice that
neither the algorithm nor the features have been tuned
specifically for the data — similar experiments have
been performed on machine-printed symbols, with es-
sentially the same findings. The method is most ef-
fective for problems involving high dimensional data
because of the existence of more subspaces.
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The data

The experiments were performed on handwritten
digits of 10 classes. The images are from the 1992
NIST (National Institute of Standards and Technol-
ogy) Competition (for details see [2]). The training
and testing sets from the competition are mixed, and
from the mixed set 60,000 samples are drawn to form
the training set TR, and 10,000 samples are drawn to
form the test set TE. The images are binary and nor-
malized to a size of 20 x 20 pixels. There are roughly
the same number of samples in each class in both the
training and testing sets.

The features

We first use the raw pixel maps of the binary, nor-
malized images as input feature vectors. For conve-
nience we call this the pixel vector (f;) which has
20 x 20 = 400 components. To see how simple knowl-
edge of the domain can help, another feature vector is
constructed by exploring the neighbor relationships of
the pixels. These features are similar to those used in
constructing quadratic polynomial discriminants [13].
They are conjunctions and disjunctions of neighboring
pixels in various directions. For a given pixel I(z, 7) at
row ¢ and column j, we take

H(i,5) = I(i,§) AI(i, j +2) horizontal neighbor

Vi, §) = I(i,§) A I(i +2, ) vertical neighbor

N(G,j) =16, ) Al +2,7+2  NW-5E diagonal neighbor
S(i,5) =I(i, ) AIi+2,5—-2) SW-NE diagonal neighbor
and

H'(i,3) = H(i,J) V H(i + 1,5) V HGE +2,5) V H{E + 3, 5)

Vi, 5) = V(L) VVE T+ 1)V VET+2)V VL, +3)
N'(4,§) = N, ) VNG + 1,5~ 1) VN@GE 42,5 —2) VN@E+3,5~ 3)
8'(4,§) =S, VSEFLIH)VSE+2,i+2)VSG+3,5+3),

where A is the binary AND and Vv is the binary
OR operations. The second vector fy is formed
by concatenating f; with the well-defined values of
H'(4,7),V'(4,5),N'(4,7), and S'(3,7) for each (i,7).
For an image of 20 x 20 pixels, f, has 852 components.

Results with single trees

First we show the results when single trees are con-
structed in the full feature space, as in the conven-
tional practice. We tested both vectors fi and f5 and
both of the tree growing methods.

Using central axis projection (abbreviated as CAP)
and fi, a tree of 3949 nodes (including both terminal
and nonterminal nodes) was obtained. When f, was
used, the tree is slightly smaller (3255 nodes). Us-
ing the perceptron training algorithm (abbreviated as
PER) and fi, a tree of only 307 nodes was obtained.
When f; was used, the resultant tree has only 87
nodes. These are the results of the interaction between
the complexity of the distributions and the algorithm
for deriving the discriminating hyperplanes. These
dramatic differences in the sizes of the trees show the
importance in the choice of tree-growing heuristics on
classification efficiency. Table 1 shows the number of



Table 1: Number of Terminal Nodes and Classification Accuracies for Each Class

CAP(f1) CAP(f2) PER(f1) PER(f2)
class || #nodes | %corr || #nodes | %corr || #nodes | %corr || #nodes | %corr
0 108 95.24 93 96.54 9 91.77 2 96.21
1 87 98.27 80 98.45 12 97.32 3 98.53
2 226 87.13 167 91.94 18 83.30 5 93.22
3 247 88.88 212 90.90 17 85.24 6 92.72
4 183 89.99 139 90.20 14 83.92 5 92.65
5 251 86.07 193 90.25 15 78.67 3 92.39
6 121 91.09 110 89.72 12 87.07 4 93.14
7 185 89.95 161 90.34 16 87.98 5 93.10
8 288 83.01 234 84.57 22 79.39 6 89.36
9 279 84.98 239 87.44 19 83.55 5 91.22
all 1975 89.57 1628 91.11 154 86.01 44 93.32
terminal nodes needed to represent each class and the
corresponding classification accuracy on TE. 10—
It is interesting to see that despite the differences |
in tree sizes, the two tree-growing algorithms do not %
differ by large in classification accuracy. An inefficient T
growing algorithm may cause duplication of similar
structures along different branches, whose effect is un- % g0 cap (£2), 200d
predictable and is dependent on the class distributions Correct - cap (1), 200d
in the feature space. - cap (f2), 100d
Yet the degradation in accuracy as a class is dis- 0o o---- cap (F1), 100d
tributed to more terminal nodes is far more obvi-
ous within the same tree. For instance, classes 0
and 1 are consistently more likely to be correct than 60—
other classes, and there are consistently fewer termi- A O O L
12345678 91011121314151617 181920

nal nodes representing 0’s and 1’s in each of the trees.
Recall that each of these trees classifies correctly all
training points in TR, the poor performance for some
classes on TE is no doubt a result of poor general-
ization. Generalization is understandably worse when
more terminal nodes, i.e., more tailored hyperplanes
are used to fit a class.

Results with multiple trees

We now see how the problem of poor generalization
can be overcome by the use of multiple trees. Again
we tested the idea with both feature vectors f; and
f2 and both tree-growing methods. The results are
shown in Figures 1 and 2.

We show the changes in overall classification correct
rate as new trees were added to the classifier. Each of
the additional trees was constructed in a random fea-
ture subspace that had not been used. The subspaces
were restricted to 100 or 200 dimensions in the exper-
iments, and the resultant differences in classification
accuracy are clear from the figures.

Since training time is substantially shorter with
central axis projection, we could easily afford to let
the algorithm continue until 20 trees were created.
With perceptron training we stopped the algorithm
at 10 trees. Note that with sufficient resources the
algorithm could have continued to create many more
trees, and the stopping points we had chosen were ar-
bitrary.

In each graph the dip in the correct rate when two
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Figure 1: Classification Accuracy (% correct) of
Forests Constructed by Central Axis Projection
(in 100- and 200- dimensional random subspaces)
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Figure 2: Classification Accuracy (% correct) of
Forests Constructed by Perceptron Training Algo-
rithm (in 100- and 200- dimensional random sub-
spaces)



trees are used is due to ambiguities of the combined
decisions (two classes sharing the same g.(z) value and
are both rejected). This can be avoided if we adjust
the probability estimates using a secondary training
set.

From the graphs it is very clear that accuracy in-
creases with the addition of new trees, and the increase
is nearly monotonic. The trend is the same despite
many differences in the details of the runs — different
feature vectors, different numbers of subspace dimen-
sions, and different tree-growing algorithms. The in-
crease slows down as the forests grow, but there has
not been any sign that there exists any upper limit
below the highest possible. In one test we continued
the run until 40 trees were created, and the increase in
correct rate still did not stop. This is in sharp contrast
with many other classifier designs, where an increase
in classifier complexity almost always leads to over-
training. We have shown a way to increase classifier
complexity (similarly, its capacity) without trading off
generalization accuracy.

Comparing the results with different feature vec-
tors and different classes, it is very promising that
with certain engineering effort (better feature designs,
better choices of training data), an excellent classifier
can be created. Furthermore, the classifier is arbitrar-
ily improvable to suit accuracy demands and resource
limits.

Considering the large number of possible subspaces,
our scope of exploration in the experiments has been
quite limited. For instance, for implementational con-
venience we restricted ourselves to combinations of
trees in random subspaces of the same number of di-
mensions, which is by no means necessary. In fact, the
choice of a subspace need not be the same for all non-
terminal nodes of a tree. The method is also not con-
strained to any particular tree-growing algorithm, nor
even the binary tree structure, and there is still room
for exploration with other sophisticated tree-growing
algorithms and various tree structures.

6 Conclusions

We have proposed a method for increasing gener-
alization accuracies of decision tree-based classifiers
without trading away accuracy on training data. Ex-
periments on handwritten digits proved the validity of
the idea and indicated many opportunities for further
improvements.

The method we have presented here is-another vari-
ant of the methodology of stochastic modeling that
has been studied in both theory and experimentation
recently [1] [7] [9] [10] [11]. The current method is in
closest resemblance with the method of multiple LVQ-
based classifiers studied in [7]. Both methods involve
creating (with' certain application of randomization)
and combining multiple ways of partitioning the fea-
ture space. The decision regions determined by these
partitions are stochastic models, the subject of study
in [1] and [10]. One of the main conclusions from the
theory is that the apparent conflict between optimiz-
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ing training set accuracy and maintaining generaliza-
tion accuracy is not intrinsic. We have given another
piece of empirical evidence of this finding. Our experi-
mentation has also revealed great potential of applying
the concepts of stochastic modeling to conventional
methods for classifier design.
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